Prediction of battery storage ageing and solid electrolyte interphase property estimation using an electrochemical model
نویسندگان
چکیده
Ageing prediction is often complicated due to the interdependency of ageing mechanisms. Research has highlighted that storage ageing is not linear with time. Capacity loss due to storing the battery at constant temperature can shed more light on parametrising the properties of the Solid Electrolyte Interphase (SEI); the identification of which, using an electrochemical model, is systematically addressed in this work. A new methodology is proposed where any one of the available storage ageing datasets can be used to find the property of the SEI layer. A sensitivity study is performed with different molecular mass and densities which are key parameters in modelling the thickness of the SEI deposit. The conductivity is adjusted to fine tune the rate of capacity fade to match experimental results. A correlation is fitted for the side reaction variation to capture the storage ageing in the 0%–100% SoC range. The methodology presented in this paper can be used to predict the unknown properties of the SEI layer which is difficult to measure experimentally. The simulation and experimental results show that the storage ageing model shows good accuracy for the cases at 50% and 90% and an acceptable agreement at 20% SoC.
منابع مشابه
Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes
DOI: 10.1002/aenm.201501590 electrochemical stability window, and (3) chemical compatibility with the anode and cathode. In the past few years, major advances have been achieved in increasing the Li ionic conductivity of the solid electrolytes. The state-of-the-art solid electrolyte materials, such as Li-garnet Li7La3Zr2O12 (LLZO) and Li10GeP2S12 (LGPS) have achieved an ionic conductivity of 10...
متن کاملNanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters.
The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase (SEI) formation and to track Li nucleation and growth mechanisms from a standard organic battery electrolyte (LiPF6 in EC:DMC), we used in situ electrochemical scanning transmission electron microscopy (...
متن کاملSimulating Li-ion battery ageing through solid electrolyte interphase growth in graphite/NMC cells
متن کامل
Electrode/Electrolyte Interface Studies in Lithium Batteries Using NMR
Easy access to portable energy sources has become necessary for the last decades and rechargeable batteries are now omnipresent in everyday tools and devices thanks to their storage capacity and relatively low weight. More recently, the possible use of lithium-ion batteries in full electric and hybrid electric vehicles has attracted considerable attention. However, great challenges still remain...
متن کامل15. Lithium-Ion Batteries and Materials
Lithium-ion (Li-ion) batteries are now widely implemented as the power or energy source for everything from portable electronics to electric vehicles. The electrochemical charge storage in the batteries is intimately related to their material properties. This chapter gives an overview of the methods for characterizing battery materials, both ex situ and in situ in practical cells. An important ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018